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Approximate constitutive equations are derived for a dilute suspension of rigid 
spheroidal particles with Brownian rotations, and the behaviour of the approxi- 
mations is explored in various flows. Following the suggestion made in the general 
formulation in part 1, the approximations take the form of Hand’s (1962) fluid 
model, in which the anisotropic microstructure is described by a single second- 
order tensor. Limiting forms of the exact constitutive equations are derived for 
weak flows and for a class of strong flows. In  both limits the microstructure is 
shown to be entirely described by a second-order tensor. The proposed approxi- 
mations are simple interpolations between the limiting forms of the exact 
equations. Predictions from the exact and approximate constitutive equations 
are compared for a variety of flows, including some which are not in the class of 
strong flows analysed. 

1. Introduction 
An urgent problem in rheology is the production of simple constitutive equa- 

tions which provide a tolerable approximation to the behaviour of non-Newtonian 
fluids for a wide class of flows. I n  part 1 of the present series (Hinch & Leal 1975, 
hereafter denoted as I), the basic formulation of suspension mechanics was 
analysed and a common simplified constitutive model was derived for materials 
which can be modelled as a suspension of particles (or macromolecules) in a 
Newtonian fluid. For small departures from equilibrium, it was shown that the 
microstructural features which determine the bulk stress for such materials can 
be completely described by a single second-order tensor. Thus, as shown earlier 
by BarthBs-Biesel & Acrivos (1973) for some specific suspensions, the constitutive 
model in this weak-flow limit reduces to a form of the second-order-tensor 
structural model of Hand (1962). In  addition the limited information available 
led us to the suggestion (see I) that the microstructure in the strong-flow regime 
far from equilibrium can be characterized for many types of flow by a single 
direction and a single scalar parameter. The constitutive model in this limit thus 
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reduces again to  a simple form of Hand’s model. At intermediate flow strengths, 
however, the analysis of I demonstrates that something more general than a 
second-order tensor is needed for the rigorous description of the microstructure 
of the majority of suspension-like materials. The full constitutive model of I is 
thus more complex than either of its separate limits and further restrictions on 
its general form must be found which are not limited to very weak or very strong 
flows if it is to be of any practical value. We suggested in I that a form of Hand’s 
model which exactly represents the two limiting cases and interpolates smoothly 
between them may give a crude but simple first approximation of the exact 
constitutive behaviour of suspension-like materials which is useful over the whole 
range of flow strengths. 

I n  the present part of our study we investigate the potential of this suggestion 
for the special case of a dilute suspension of rigid spheroidal particles in the 
presence of Brownian rotation. The advantage of this material for our present 
purposes is the fact that exact constitutive equations are available, and have 
been evaluated in many particular flows (see the review by Leal & Hinch 1973). 
We begin by restating in $ 2  the exact constitutive equations, and their limiting 
forms for small and large departures from the equilibrium state of random 
orientation. Next, in 9 3 a simple composite approximation of the Hand type is 
derived which reproduces the limiting results exactly and interpolates smoothly 
between them. Finally, in $ 4 the accuracy of the simple approximate form is 
determined by comparison with results from the exact model for several different 
flow types. 

2. The suspension 
2.1. The exact constitutive equations 

We consider a dilute suspension of rigid, axially symmetric particles which are 
free of external body forces or couples and are sufficiently small that the micro- 
dynamics are inertialess. When placed in a homogeneous time-dependent linear 
flow U(X, t )  = r ( t ) .  X, 

with r = ~ + n ,  E T = E ,  n ~ = - n ,  
an isolated particle aligned in the direction of the unit vector p ( t )  rotates in t.he 
absence of Brownian couples according to 

where G is a shape factor of modulus less than unity (except for very curious 
particles; Bretherton 1962). When Brownian couples act, the orientation of a 
single particle is given statistically by a probability density function N ( p ,  t )  
which satisfies a Fokker-Planck equation in p space: 

( 2 )  aNpt + v . [ ~ i ,  - DVNI = 0, 

with 0 = p ( p )  given by (1)  and D the rotational diffusivity. Equations (1)  and ( 2 )  
govern the evolution of the microstructure of the suspension, and correspond for 
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this particular material to equations ( 3 b )  and (7) in the general formulation of I. 
The exact constitutive equations are completed by relating the bulk stress to the 
microstructural state as described by N .  This is achieved using a volume average 
ofthe stress at the microscale of the suspended particles and results in 

u = -pl + 2pE + 2p<Dt{2A (PPPP):E 
+ 2BKPP) * E + E * (PP)l+ CE + F(PP)D}, (3) 

where ,u is the Newtonian solvent viscosity, (D the small volume fraction of the 
particles and A ,  B, C and F four more shape factors. The angle brackets denote 
quantities which are averaged with respect to the probability density function 
N(p, t). Equation (3) corresponds for this particular material to equations (4) and 
(8) in the general formulation of I. A complete description of the derivation of 
the constitutive equations (1)-(3) can be found in Leal & Hinch (1973). 

As we have noted in the introduction and in I, the majority of suspension-like 
materials require a more general description of the microstructure than can be 
provided by a single second-order tensor. The model suspension represented by 
(1)-(3) is no exception, since no explicit or implicit combination of the basic 
equations can be used to eliminate the fourth-order vector product (pppp). 
Prager (1957) has shown that a direct dynamic equation for (pp) can be obtained 
by multiplying (2) by pp - 91 and integrating over p space. The result is 

D(PP)/Dt- Q * (PP) - (PP) * QT 

- GEE. (PP) + (PP). ET- 2(PPPP):El +GDC(PP) - *I1 = 0. (4) 

However, this equation for the development of (pp) contains the unknown 
higher moment (pppp). Similarly, an equation may be obtained for the develop- 
ment of any finite moment of p, but each such equation always involves a higher 
moment of p. There is thus no finite closed system of equations which is equivalent 
to (1)-(3) but simpler in f0rm.t To evaluate the rheological response of the model 
suspension for a general form r(t) and arbitrary flow strengths, one must first 
solve (2) for N(p, t), and substitute the result into (3). As indicated in I, only the 
limiting cases of very weak or very strong flow, corresponding to near-equilibrium 
or strongly non-equilibrium microstructure, are amenable to rigorous asymptotic 
solution. 

2.2. Near-equilibrium approximations 
Lowest approximation. When the flow is very weak, the Brownian motions 

produce an almost uniform orientation distribution : 

N = (4n)-l +smaller terms. 

The lowest approximations for the angle averages are therefore simply 

(pp) = QI + ..., (PPPP):E = &E + ... . (5% b)  

t It may be noted, however, that for steady bulk flow (4) does provide a definite 
algebraic relationship between (pppp): E and (pp), which may be used to express the 
bulk stress Q [equation (3)] entirely in terms of the second moment (pp). 
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At this level of approximation, the relationship (3) between the bulk stress and 
bulk rate of strain is Newtonian in form, with an effective viscosity 

p* = p [ l + ( & A + + B + C ) @ ] .  

We now proceed to  the next approximation. 
First correction. Neither the spin of the particle with the local vorticity nor the 

rotational diffusion process disturbs the uniform orientation distribution. It is 
only the pure-strain component of the bulk motion which initially creates any 
preferred alignment of the particles. When the left-hand side of ( 2 )  is evaluated 
with the constant N ,  an unbalanced strain-induced term - (3/47r)G(p. E . p) 
remains. This forces a correction to N which is described by a second-order tensor 
anisotropy : N = (47r)-l(l+ +$p . A.  p +smaller terms), 

in which A(t) is small, O(E/D) ,  and both symmetric and traceless. The vorticity 
spin term in ( 2 )  rotates A, while the diffusion term decreases A’s magnitude. 
Both terms just alter the second-order tensor without producing any further 
type of anisotropy. The action of the straining motion on A does generate a new 
type of term but it is neglected a t  the present level in the near-equilibrium 
approximation. 

The development of A can be found directly from (2), and is governed a t  this 

( 6 )  
level of approximation by 

where 9/9t is the Jauman derivative 

(9/9t+ 6D)A = +GE, 

9Al9t = DA/Dt - 51. A - A. aT. 
Knowing A, we can obtain a better approximation than (5) to the important 
moments 

(pp) = &I+A +..., (7a)  

( 7 b )  (pppp): E = -&E++(A. E + E .  A) ++IA: E + ... . 
At the next level of approximation, the bulk straining motion acting on A 

generates a fourth-order tensor contribution to the orientation distribution 
function. As we have noted in the introduction, the present study is intended to 
investigate the potential of a second-order-tensor model for the approximate 
description of suspensions. Thus for our present purposes there is no need to 
proceed fully to this next level of approximation. The use of ( 7 )  in the A and B 
terms of the stress equation (3) is sufficient for the description of the first de- 
partures of these terms from the Newtonian (equilibrium structure) form. 
Equations ( 6 )  and (7) ,  however, produce only the Newtonian form for the F term 
in (3), DA = &GE, and it is thus necessary to proceed partially to the next level 
of approximation in order that the first departure of the bulk stress from the 
Newtonian form is fully described. Fortunately the difficult term involves only 
(PP), for which there is the exact equation (4). To obtain an adequate approxi- 
mation to (4) for our purposes, we may use ( 7 )  in (4) and now define A exactly 
by (7a). Thus we replace ( 6 )  by 

( 8 )  (9/9t + 6D)A = G[zE + + ( E .  A+ A.  E )  -+lA: E l .  
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In slowly varying weak flows in which \19/9tI\, llGEll < D equation (8) may be 
solved iteratively to obtain an explicit expression for A: 

(E . E - 81 E : E) + . . . . 1 
Substituting this into (3) gives the second-order-fluid approximation 

2 2  GF 1 9 E  
15 3 ") 15 90 D 9 t  Q = - ~ I + ~ , u E + ~ , u @  - A + - B + C +  - E- --- 

- (  E.E-QIE:E)+  ... 

Of course (7) and consequently (8) remain valid outside the slowly varying 
restriction of the second-order-fluid model. In more general situations A [as the 
solution of (S)] need only remain small in order to be consistent with the near- 
equilibrium approximation. 

In  later sect iclns of this paper, we shall use A to denote the non-isotropic part 
of (pp), as indicated in (7a). To obtain the correct Newtonian results for an 
equilibrium microstructure, ( 5 )  must be used in (3) and (4). The correct fist 
deviations from the Newtonian (equilibrium) form are obtained by using (7) in 
(3) and (4). 

2.3. Approximate forms for the strong-$ow regime 
Lowed approximation. A prerequisite for obtaining an asymptotic representa- 

tion of (1)-(3) in the limit of weak Brownian motion (strong flow) is an under- 
standing of the particle behaviour when no random couples are present, i.e. the 
solutions of the initial-value problem represented by (1). Bretherton (1962) has 
shown how this nonlinear problem may be replaced by the linear one obtained by 
dropping the final term of (1). Thesolutionsto theoriginal equationremain parallel 
for all time to the solutions of the modified, linear equation. We consider here the 
subclass of possible flows in which the particles tend to align in a single direction 
independent of their initial orientation. Bretherton (1962) has shown that this 
subclass consists of those flows for which the real part of one of the eigenvalues 
of G? + GE exceeds the real parts of the other two eigenva1ues.t This condition 
is actually satisfied for G =l= 0 in all but a very small class of exceptional flows. 
Unfortunately many of the most common rheological flows fall into this excep- 
tional class, including shear flows of all types, and certain axisymmetric straining 
motions. 1 Although simple shearing flows are thus strictly excluded from the 
present analysis, an earlier paper (Hinch & Leal 1972) shows that even these flows 
exhibit a sharply peaked orientation distribution for particles which have 

t The initial orientations from which the particles do not align for a flow in this class 
are a set of measure zero and so would not contribute to the angle averages in (3). Further- 
more, in a real suspension, any weak Brownian couples which existed would move the 
particles out of these special orientations. 

$ The specific axisymmetric straining flows which are to be considered as exceptional 
depend upon the sign of G (i.e. on the particle geometry). Foi G > 0 biaxial extensional 
flows are exceptions, while for G < 0 it is the uniaxial extensional flows which are excluded 
from the present theoretical development. 
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extreme axis ratios (i.e. G near k I), and it might be anticipated that such cases 
would not be badly approximated in the limit of weak Brownian motion by a 
theory which presumed total alignment in a single direction. We shall see, 
however, that shear flows for any G not near k 1 produce a distribution which 
is not sueciently localized for rigorous description by the asymptotic form for 
weak Brownian motion which we derive here. The error committed in the 
exceptional flows will provide one test of the tolerability of the approximate 
models. 

Since we restrict attention to situations in which all particles tend to align in 
a single direction in the absence of Brownian rotation, the spread about that 
direction is expected to be small in the limit of weak Brownian motion. At the 
lowest approximation we therefore evaluate the moments (pp) and (pppp) as 
if all of the particles were aligned in the direction of a unit vector d :  

1 (9) 
(pp) = dd +smaller terms, 

(pppp): E = d d d d :  E +smaller terms. 

The equation governing the evolution of d may be seen from (1) to be 

9 d / B t  = G[ E . d - d d d :  El. (10) 

There are infinitely many ways of expressing the fourth moment in terms of the 
quadratic moment which are equivalent at this approximation, e.g. 

(PPPP): E = (PP>(PP>: E + *.-  

= (PP). E. (PP>+ ... 
= (PP)2 (PP>2: E/(I : (PP)2) + . * * * (11) 

The choice between the alternative expressions depends on their behaviour 
outside this approximation. 

Although attractive because of its simplicity, one serious drawback of the 
asymptotic approximation (9) and (10) is that it contains no internal check of 
consistency. If the particles are initially strongly aligned, then solving (10) 
forwards in time gives only the rate of change of the alignment direction, and 
provides no indication of whether the particles remain strongly aligned. An 
analogous situation does not occur in the near-equilibrium approximations since 
(6) and (8) can both show A increasing in magnitude as the near-equilibrium 
assumptions break down. To overcome this deficiency, we must proceed to the 
next level of approximation for the strong-flow asymptotic limit. 

First correction. At this level, we must model the small spread in particle 
orientation which arises owing to the diffusive effect of weak Brownian rotation. 
The spread is concentrated near d by the variation of p(p) in the vicinity of d .  
Since the spread is small, the advection field (1) may be approximated to first 
order by its linear variation around p = d .  Diffusion acting against a time- 
dependent linear advection produces a multivariate Gaussian distribution in N 
localized near d .  The Gaussian is specified by its variance about d ,  and the 
evolution equation for the variance tensor can be calculated directly from (2). 

We start by linearizing (1) about the direction d by putting p = d + 6 ,  with 6 
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small and therefore approximately orthogonal to d. Substituting this expression 
into (1) and linearizing after separating out (10) yields 

6 = Q.S+G[E.S-S(d.E.d)-2d(d.E.S)]. 

Part of the change in S is due to the rotation of d. This part is eliminated by 
projecting the last equation into the space orthogonal to the instantaneous d. 
Using the subscript 2 to denote variables associated with this two-dimensional 
subspace, we obtain S, = K2. 6,, 

with the tensor K, defined as 

K, = Q - dd. Q - Q.  dd + G[E - dd. E - E . dd + 2dddd: E - dd: El]. 

The diffusion equation for the spread about d is then 

aN 8 a2N 
- + - .(K,.S,N) = D- at as, as; 3 

with the multivariate Gaussian solution 
N = (2n)-l (det B,)*exp ( - is,. B;l. 8,). 

The variance tensor is denoted by B,, i.e. (S,S2) = B,, and its evolution is 

B, = K,. B,+ B2. KT +2D1,. governed by 

Finally we embed this two-dimensional tensor back into the original three- 
dimensional problem to form B. The last equation gives the development of those 
components of B in the space orthogonal to d. The remaining components can 
be calculated from the requirement that 

B.d = 0 = d.B 

must remain true in time as d rotates. Thus 

B = (B,),-dd.B-B.dd+dd(d.B.d). 

The equation governing the development of the full tensor B is then found to be 

.9B/.9t = G[E.B+B.E-2B(dd:E)1+2D(I-dd). (12) 

This equation is, of course, an approximation owing to the linearization of the 
advection equation (1) about d. If the spread of orientations is truly small, then 
B should be small, and the error in (12) is O(EGB2, DB). Indeed as (10) and (12) 
are integrated forwards in time, the relative magnitude of B provides the internal 
consistency check on the strong-flow assumption which was missing at the level 
of approximation represented by (9) and (10). 

The preceding lowest-order analysis of the spread about d shows that the 
mean displacement of p from d is zero at O(S), that the variance is B at O(S2) 
and that higher moments are o(S2). In  working accurately at O(S2), it  is clear that 
a, better approximation is required for the localized mean value of p. There are 
two independent contributions to the mean displacement of p from d at O(S2). 
In order that p remains a unit vector, the O(S) displacements orthogonal to d 

I 3  PLM 76 
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must lead to an O(S2) shortening in the direction of d. This mean displacement 
is - $d(Sa = - *dl : B. I n  the two-dimensional plane orthogonal to d, the mean 
displacement at 0 ( S 2 )  comes from the quadratic correction to the linear advection 
field described by 

S, = K,. 6,- 2G[(I - dd)d. E. ( I  - dd)]: S,S, + 0(S3). 
With this advection field, the solution of the diffusion equation is no longer a 
multivariate Gaussian distribution. To find the small correction to the mean 
displacement, the method of moments is adequate. If the advection-diffusion 
equation is multiplied by 6, and integrated over all 6, space (assuming that all 
terms decay to zero sufficiently rapidly as 6,+ a), the result is 

(6,) = K,.(S,)-2G[(l-dd)d.E.(I-dd)]:(S,S,)+O(S3). 
Diffusion does not affect this first moment. I n  the last term a sufficiently accurate 
estimate for (S,S,) is B,. Finally (S,), in the two-dimensional space, must be 
embedded back into the original three-dimensional space as(S), whichis to remain 
orthogonal to the moving d. Thus 

= G[E. (S)- 2d(d. E .  (6)) - (S)dd: E - 2B. E. d]. 

When proceeding to higher-order corrections beyond O(S2), the curvature of the 
unit sphere on which p lies must be considered. 

The two O(8,) effects in the localized mean displacement of p from d can be 
combined with d to form the localized mean director a t  O ( P )  : 

d’= d(l-$l:B)+(S). 

This modified director is not of unit length like the original d. The evolution 
equation for the modified director can be derived from the preceding analysis of 
its component parts: 

(13) 9d’/Bt = G[E .d’- d’d’d’: E-d’E: B- 2B. E.  d’] + 2Dd’, 

neglecting small terms 0(S2E, D ) .  
The modified director d’ is the average of p using that part of the distribution 

N localized around d. It is necessary to distinguish between such a localized 
average and the full average of p, which vanishes identically because of a sym- 
metric part of N around - d. Viewing d’ as some sort of average of p is however 
very useful in providing an alternative derivation of (13) which bypasses all the 
detailed analysis of the contributing effects. The full distribution N must first 
be split into two parts N* which are defined everywhere but which are localized 
around kd, respectively. The task of separating N into its localized parts is 
intuitively simple only in the strong-flow limit. [One possible definition which 
can be applied mechanically to all flows is as follows. Take the unit vector d 
to be the largest principal axis of (pp) and define N* = $( 1 & (d. p)zn+l)N(p) 
with n a suitably large number.] The first moment of the full diffusion equation 
(2) using N +  instead of N is 

g(p)+/Bt = G[E. (P)+- (PPP)+: E] + ~D(P)+. 
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The equation for the modified director is recovered by identifying (p)+ with d’ 
and making a strong-flow approximation: 

(ppp)+ = (p)+(p)+(p)+ + [(p)+B +permutations of indices] + o(cY2). 

The trouble with this more direct approach is that any instantaneous definition 
of Nf must necessarily yield localized distribution functions which do not evolve 
according to the global diffusion equation (2). The simple intuitive interpretation 
of the strong-flow limit is, however, quite clear despite these mathematical 
difficulties. 

The second approximation to the moments (9) can now be stated. They are 
simplest when expressed in terms of the localized mean and variance of p: 

(pp) = d’d’ + B +0(S2) ,  (14a) 

+ 2(d’d’. E . B + B . E . d’d’) + o(cY2). (1  4b)  

These results are not dependent in any essential way on the detailed nature of 
the spread in the distribution about d. Indeed, any distribution which has 
N = O ( S F ~ )  as 8, becomes large, so that fourth moments are locally determined, 
would exhibit the same basic relationships when expressed in terms of the mean 
and variance of p. The exponential decay of a Gaussian amply satisfies this 
algebraic decay condition. The condition is not, however, generally satisfied in 
other cases, such as slender rod-like particles in simple shear flow, which appear 
to be strongly aligned in an averaged sense but are not members of the class of 
flows which produces alignment in a single direction. 

Of the infinite number of ways of eliminating d’d’ and B between (14a) and 
(14b) with an accuracy O ( P ) ,  one of the simpler forms is 

(pppp): E = d’d’d’d’: E + Bd’d’: E + d’d’B: E 

(PPPP): E = (PP>(PP>: E +2[(PP>. E (PP>- (PP)2(PP)2: E/I:(PP)21, (15) 
with an error o(S2). By proceeding to this next approximation, one particular 
combination of the alternatives (1 1) has been selected. The simple form (15) has 
the desirable property of having the correct trace, (pp): E, a t  all values of (pp). 

The two evolution equations (10) and (12) can be combined using (14a) to give 

q P P ) / a t  = Q[E. (PP) + (PP). E - 2(PP)(PP): El 
+6D(Ql- (pp) )+O(GEB2,DB) .  (16) 

Comparing this with (15) substituted into (4), we see that the second and third 
terms in the right-hand side of (15) are not necessary in the evolution equation. 
This is because they generate the negligible components (pp) - dd( 1 - I : B), 
which are not included in (B& Their neglect in (16) would be a consistent 
approximation to (4). We shall prefer to use (15) in (4), because the full equation 
(15) should be used in the equation (3) for the stress. 

3. An approximate constitutive model by interpolation 
The exact constitutive model (1)-(3) is extremely complex, and amenable to 

rigorous simplification only in the near-equilibrium and strong-flow limits, which 
we have considered in the preceding section. Hence, if constitutive models of 

13-2 
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this type (see I) are to find practical use, additional methods of approximation 
must be developed which produce simpler forms while still providing a tolerable 
representation of material behaviour over the whole range of flow strengths. 
Here we consider an approximation of (1)-(3) in which the ink i t e  hierarchy of 
moment equations of the type (4) is truncated a t  the quadratic level by using a 
simple interpolation scheme to express (pppp) in terms of (pp). With a relation- 
ship between (pppp) and (pp) established, (4) becomes a closed system for the 
evolution of (pp), and moreover the stress in (3) may also be calculated from 
the known (pp). We have shown in the previous section that the fourth moment 
(pppp) can be related to (pp) in a rigorous manner in both the weak- and the 
strong-flow limit, accurate to the first corrected approximation in each case. At 
the lowest level of approximation ( 5 b )  and (1 1) provide the weak- and strong-flow 
relationships. At the next level (7b) and (15) are necessary. The composite ap- 
proximate relationships, which are the basis of our suggested method of simpli- 
fication, are nothing more than simple interpolations between the weak- and 
strong-flow asymptotes, which are represented exactly. There are many different 
ad h c  methods of effecting the interpolation. The choice of method will here be 
one of simplicity. 

In  the fist composite we aim to be accurate only to the lowest-level approxi- 
mations (5  b) and (1 1) under the limiting conditions. The flexibility in the straight- 
forward equivalent alternative forms in (1 1) makes the process of interpolation 
particularly easy in this f i s t  composite. We need only pick a linear combination 
of the strong-flow alternatives which has the correct weak-flow behaviour. Such 
a combination is 

A general restriction on the interpolated form is that (PP), calculated from (4)) 

must have tr(pp) = 1. 

Although this condition is automatically satisfied by the asymptotic expressions 
for (pppp): E in the strong- and weak-flow limits, in the intermediate regime it 
is necessary that the interpolated form satisfy the additional constraint 

tr((PPPP): E)  = V P P ) .  
Thus the simple, linear combination of strong-flow forms suggested must be 
modified to the form 

(PPPP): E M *{6(PP). E (PP>- (PP>(PP>: E - 21(PP)2: E + 21(PP): E}. (17) 

The two isotropic terms drop out in the strong- and weak-flow limits, but ensure 
satisfaction of the trace condition in between. 

In  the second composite a more complicated method of interpolation is needed 
to pass smoothly from (7b) to (15). The strong-flow limit (15) is more elaborate, 
so we take that as the basis. The difference between the correct weak-flow form 
( 7 b )  and the weak limit of (1 5 )  is 

*E - H(PP> * E + E (PP) - Q((PP): Ell}. 
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To construct an interpolationwe add to (15) this difference multiplied byascalar, 
a say, which must be o(S2) in the strong limit and 1 + O(A2) in the weak limit. 
The resulting second composite is 

(PPPP): E M (PP>(PP>: E + 2[(PP). E .  (PP) - (PP)z(PP)z: E/(I :(PP)2)1 
+ a l ~ E - ~ ( E . ( P P ) + ( P P ) . E - 3 1 ( P P ) :  E)1. (18) 

A fairly simple scalar with the desired properties is 

a = exp [2(1- 3 ( p ~ ) ~ : I ) / ( l -  (PP)~:~ ) ] .  

The proposed approximate constitutive model is thus composed of (3) and (4), 
with the interpolation formula (17) or (18) included as a physically motivated 
closure approximation. These models, in which the microstructure is described 
completely by a single second-order tensor, are special forms of the phenomeno- 
logical model of Hand (1962). 

4. Comparison with exact model calculations 
The interpolation formulae (17) and (18) have been constructed essentially on 

an ad hoc basis, and it is likely that better interpolations can be found, particularly 
if only required for applications to a small class of special flows. It is not our 
intention here, however, to provide an exhaustive study of all possible inter- 
polations, or to optimize the choice in any sense. Rather we have chosen forms 
which are amongst the simpler possibilities, and which incorporate all the 
presently available rigorous theoretical understanding. These forms should 
provide a fair, if not optimal, basis from which to judge the potential of approxi- 
mate constitutive models which interpolate smoothly between exactly repre- 
sented strong- and weak-flow limits. 

In  the remainder of the present paper, the two interpolations are tested, by 
comparing the predicted behaviour from the exact constitutive model (1)-(3) 
with that from the approximate form composed of (3) and (4) with either (17) 
or (18). The tests fall into two classes. First intermediate flow strengths are 
studied for flows in which the strong-flow limit is correctly modelled. These tests 
allow the magnitude of the error in the interpolations to be determined, and also 
provide an assessment of the range of validity of the strong- and weak-flow 
asymptotic forms. Second the behaviour of the model is examined for those flows 
in which the strong-flow limit is not strictly applicable, i.e. those in which the 
particles do not align in a single direction in the absence of Brownian rotation. 

The majority of the tests presented here are for one type of particle, namely a 
spheroid with an aspect ratio of 5. For spheroids (ellipsoids of revolution) the five 
shape factors A ,  B,  C ,  F and G in ( 1 )  and (3) can be expressed in terms of ele- 
mentary functions involving only the aspect ratio, i.e. the ratio of the semi-major 
and semi-minor diameters. The value of 5 for the aspect ratio was chosen in order 

avoid possible special circumstances associated with spheres, very slender 
bodies or very flat disks. The numerical values of the shape factors taken are 
A = 4-79, B = 0.0911, C = 2.04, F = 38-6 and (;r = 0.923. 
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4.1. Uniaxial and biaxial extensional motion 
We begin with the case of an axisymmetric straining motion 

This flow is convenient for our present purposes because the constitutive be- 
haviour is completely described by a single viscosity function 

r(e)  = w 1 1 -  g 2 2 -  g33)/12e, 

and because it provides a test of both types for particle motion in the strong-flow 
limit. The regime (e > 0) of uniaxial extensional motion has exactly the assumed 
property of full alignment in one direction for prolate particles ( r  > 1). For 
biaxial extension ( e  < 0) ,  on the other hand, the particles align strongly in a 
plane, but within that plane show no further tendency to align. 

Exact results were obtained using Kramers’ (1945) method of solving (2). 
Because the flows are irrotational, the advection velocity ( 1 )  can be written as 
the gradient of a scalar potential function: 

p = -V$, $ = -&Gp.E.p. 
The diffusion equation has a steady-state solution corresponding to a Maxwell- 
Boltzmann distribution, Ncc exp ( - $/I)). The constant of proportionality is 
determined from the normalization of N .  The required weighted integrals of N 
were evaluated numerically, although they can be expressed in terms of tabulated 
functions related to the error function. 

For the results from the interpolations, (4) was solved numerically as an 
initial-value problem using (17)  or (18), and either the isotropic state, (pp) = ;I, 
or the steady state corresponding to a weaker flow strength as starting values. 
Although seemingly wasteful in comparison with more direct methods, this 
initial-value approach has the advantage of avoiding unphysical and unstable 
equilibria which are solutions of the steady-state equations. 

Both the exact and interpolated results for the reduced viscosity function 

[r(e)l = -P)/P@ 

are plotted in figure 1 for - 10 < e/D < 10. The curves all show a monotonic 
strain thickening in uniaxial extension ( e  > 0) for this dilute suspension of 
spheroidal particles, but show a strain thinning in the biaxial (e < 0) case. For 
e > 0, where the strong-flow assumption is exactly satisfied, the agreement 
between the interpolated forms (17) and (18) and the exact results is good, within 
6 yo for (17)  and imperceptibly different for (18). In  addition it may be shown that 
all of the curves converge to the asymptotic value [r(oo)] = 8-65. What is perhaps 
most surprising of the results in figure 1 is the qualitatively similar behaviour 
shown by the interpolated forms in biaxial extension (e < 0), to which the strong- 
flow analysis does not rigorously apply. I n  this case, the maximum difference 
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FIQURE 1. The intrinsic viscosity in axisymmetric straining motion for spheriods of aspect 
ratio five, comparing the exact result (E) with those predicted by ( 1 7 )  (1) and (18) (2). 

between (17) and the exact results is approximately 10 yo for - 10 < e/D < 0. 
Unlike uniaxial extension, however, the approximate models produce incorrect 
limiting values for e/D+ -m. The exact value is [q( -m)] = 3.71, while the 
interpolation forms (17) and (18) give 2.86 and 3.6, respectively. Nevertheless, 
the behaviour of the interpolation models is far from unacceptable, and is, in 
fact, surprisingly good considering the non-optimal (ad hoc) choice of the inter- 
polated forms. 

4.2. Two-dimensional straining motion 
Except for spheres, all spheroidal particles subjected to a two-dimensional 

align in a single direction as e/D+m. The constitutive behaviour in the steady 
state is now described by a viscosity function 7 = (ull - cr2,)/4e and a cross-stress 
difference crI1 + cr22 - 2cr'33, which are both even functions of e/D. As for the axi- 
symmetric straining motion, the exact results were obtained by numerically 
evaluating the weighted integrals with a Maxwell-Boltzmann distribution, and 
the results for the interpolations were obtained by numerically solving an 
initial-value problem. 

The results for the reduced viscosity function [q] = (q  -,u)/,uQ, are presented 
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FIGURE 2. For spheroids of aspect ratio five in two-dimensional straining motion, 
(a) the intrinsic viscosity and ( b )  the cross-stress difference function. 
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in @ r e  2(a). There is a monotonic strain thickening but with less total change 
than in the case of uniaxial axisymmetric extension. Both of the interpolations 
correctly show this qualitative behaviour. In  this flow the second interpolation 
(18) is considerably better than (17). Since the strong-flow assumption is exactly 
satisfied, both of the approximate models give the correct limiting value, 
[ ~ ( C O ) ]  = 7.0. The more sophisticated model (18) is, however, within 2 yo of the 
exact results for all e/D, while the simpler interpolation is out by as much as 
10 % a t  intermediate flow strengths. 

The cross-stress difference is a more subtle measure of particle alignment 
because i t  is due to particles being pulled down onto the 1, 2 flow plane rather 
than being simply rotated about the 3 axis. Figure 2(b) shows that the cross-stress 
difference function (all + a22 - 2a,)/2,u@e rises from zero, tending to a constant 
limiting value of 9.9 at large strain rates (e/D+oO). The cross-stresses contribute 
about 20% to the particle stress in all. For this rather sensitive measure of 
particle orientation, the cruder model (17) is still within 15 % of the exact results 
for all e/D, while the model (18) is excellent, within 2-3 % over the whole range 
0 < e/D < 03. 

4.3. Simple shearjow 
In simple shear flow 

particles do not align in a single direction when there is no Brownian motion. 
Instead the particles rotate non-uniformly about periodic closed orbits which 
were originally analysed for spheroids by Jeffery (1922). Thus the basic assump- 
tion of the strong-flow analysis is not applicable to this common flow, and one 
should expect good quantitative results from the interpolation models only at 
low shear rates, where the (correctly modelled) near-equilibrium limiting form 
is dominant. Indeed a very severe test of the acceptability of the interpolated 
models is that they behave harmlessly in simple shear flow a t  all shear rates. 

The results for the interpolated models were again found by numerically 
solving an initial-value problem. The exact results for the shear viscosity are 
taken from the tables of Scheraga (1955). The exact normal-stress differences 
were found by using in addition the tables of the birefringence functions given 
by Scheraga, Edsall & Gadd (1951). Using Prager’s identity (4) it  is possible to 
express the stress (3) in terms of the second moments (pp) alone. There are four 
non-zero second moments in simple shear flow: @:), (p i ) ,  (13;) and ( p a 2 ) .  One 
of the diagonal moments can be eliminated using the trace condition tr(p2) = 1.  
The birefringence data give (p: - p i )  and (p1p2). The remaining moment can be 
found from the viscosity table, enabling the normal stresses to be evaluated. 

The viscosity indicates a shear thinning, as shown in figure 3 (a). The second- 
order-fluid approximation of a constant viscosity at low shear rates has a 5 %  
accuracy out to y / D  = 2 .  Clearly shown in the figure is the slow approach to the 
high-shear-rate limiting value of the viscosity of 2-85 given by Hinch & Leal 
(1972). It is only after y / D  = 200 that the viscosity as calculated from the exact 
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FIGURE 3. For spheroids of aspect ratio five in simple shearing motion, (a)  the intrinsic 
viscosity, ( b )  the first normal-stress difference and ( c )  the second normal-stress difference. 
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model is within 5 yo of its limiting value. While no consideration was given to 
shear in the design of the approximate constitutive equations, the interpolations 
both have the correct qualitative behaviour, and with surprisingly good quanti- 
tative accuracy. The more sophisticated interpolation (18) is nearer to the exact 
results, being 3 yo out a t  y / D  = 10 and 4 yo out a t  y / D  = 20, compared with 3 yo 
and 7 %  for (17) .  

The results for the first and second normal-stress differences are shown in 
figures 3 ( b )  and ( c ) .  Both increase quadratically with the shear rate, starting 
from zero, and tend to constant limiting values a t  high shear rates (70.8 and 2.6, 
respectively). The first normal-stress difference is positive while the second is 
negative and less than one-tenth of the magnitude of the first. The normal 
stresses are a t  most one-third of the size of the particle contribution to the shear 
stress. As with the viscosity function, the second-order-fluid asymptotics for the 
normal stresses hold to 5 % out to y / D  = 2. There is also no sign of approach to 
the high-shear limits by y / D  = 20. The interpolations both have the correct 
qualitative behaviour. The cruder interpolation (1  7) is amazingly accurate for 
the first normal-stress difference, within 24 % for y /D < 20, whereas the inter- 
polation (18) has a maximum error of about 15 % for the intermediate value 
y / D -  10. 

The behaviour of the interpolated models in steady shear flow is again sur- 
prisingly acceptable. It is true that there is some partial particle alignment in 
strong shear flow, especially for large aspect ratios (Leal & Hinch 1971). As we 
have seen, the interpolations are based on a hypothesized alignment in the 
strong-flow limit. Thus i t  might be argued that a t  least partial success is to be 
expected even for an aspect ratio of five. The shear viscosity, however, is not so 
much dependent upon the degree of particle alignment but rather is a subtle 
measure of the spread of the particles about their partial alignment with the 
flow. The normal-stress differences, which are both small compared with the 
shear stress, are an even more delicate measure of the skewness of the spread 
about alignment. The quantitative correctness of the interpolation models is 
therefore much more surprising than one would be led to believe on the basis of 
the crude argument of an averaged alignment which we have suggested above. 
A partial illustration of the inappropriateness of this argument can be easily 
obtained by simply comparing the model predictions with exact calculations for 
a significantly larger value of r where the degree of average alignment is increased. 
Such a comparison is made in figure 4, where we have plotted the viscosity 
and normal-stress differences for a particle aspect ratio of 25. For the viscosity, 
the maximum error occurs a t  y / D  = 20 in the range 0 < y / D  < 20, and is 
approximately 14y0 for the interpolation model corresponding to (17), and 6 yo 
for (18). This comparison is actually worse than for the smaller aspect ratio, 
especially for the cruder interpolation (17). The behaviour of the interpolation 
models for the primary normal-stress difference is similar, as may be seen by 
comparing figures 3 ( b )  and 4 ( b ) .  The maximum error for the larger aspect ratio 
a t  y / D  = 20 is approximately 25 % for interpolation (18), slightly larger than 
before. Finally, comparing figures 3 (c) and 4(c) for the second normal-stress 
difference, it can be seen that the model calculations are in somewhat poorer 
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FIQIJRE 4. For spheroids of aepect ratio twenty-five in simple shearing motion, (a) the 
intrinsic viscosity, ( b )  the first normal-stress difference and (c) the second normal-stress 
difference. 
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quantitative agreement for the larger aspect ratio. All of these results for an 
aspect ratio of twenty-five serve to emphasize the point that the greater degree 
of alignment which occurs with increased aspect ratio in the strong-flow limit 
of simple shear flow does not necessarily improve the applicability of a inter- 
polation model which is based on a strong-flow limit with complete alignment. 
As we have noted earlier, the condition for strict validity of the strong-flow 
approximation which we have used to construct our interpolation formulae is 
N = O(8-6) as 8 becomes large. Simple shearing flows have N = O ( E 3 )  only. 

4.4. Transients in uniaxial extension 
The tests of the interpolations so far have been of steady states. The dynamic 
viscosity will naturally be given correctly by the interpolations because they have 
the correct small amplitude shear behaviour built into them. A real time- 
dependent test must not be limited to weak flow strengths. The transient 
response to a suddenly imposed steady strong flow affords a suitable test. Uniaxial 
extension and simple shear flows have been explored. 

In  order to obtain some exact results for a comparison, the flow strength was 
made infinitely large by switching off the Brownian motion, i.e. setting D = 0. 
The probability equation (2) can then be bypassed using a Lagrangian method. 
Equation (1) must f i s t  be solved and the solution expressed as p(t;  po), where 
p = po at t = 0. Then, in the weighted integrals for the moments of N ,  the con- 
served probability may be referred back to the initial uniformly random state by 

WP, W P  = N(p0, Wp0 = (47Vdp0; 

(PP> = IPV;  P ~ ) P ( ~ ;  pol (477)-ldpO. 

thus, for example, in the second moment 

In  uniaxial extension the desired integrals can be expressed in terms of elementary 
functions, although the complexity of the algebra made a numerical evaluation 
a more attractive proposition. 

The results for the transient response are shown in figure 5. The qualitative 
behaviour, which is correctly given by the interpolations, is a monotonic increase 
in the viscosity, settling down to the steady value within two strain times. The 
simpler interpolation (17) has a maximum error of approximately 3 % and is 
visually very satisfactory, while interpolation (1  8) has a maximum error of 7 % 
with a slight oscillation about the exact curve. To some extent, however, the 
more sophisticated interpolation (1 8) is only overemphasizing an interesting 
nonlinear effect in the exact response, in which the rate of increase of the viscosity 
doubles from its initial rate before decaying away. 

4.5. Transients in simple shear 
As in the preceding subsection, the transients are for a suddenly started steady 
simple shear, starting from the rest state (pp) = 41 and with no diffusion, i.e. 
D = 0. The exact results were again obtained using a Lagrangian description. 

The response of both the exact system and the interpolations is a periodic 
oscillation. Only when diffusion is present is the oscillation damped. Half the 
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FIGURE 5. The transients of the intrinsic viscosity in axisymmetric straining motion 

for spheroids of aspect ratio five with no Brownian motion. 

period is displayed in the figures. The second half of the period of the viscosity 
function in figure 6(a) is symmetric about the half-period, while the normal 
stresses in figures 6 ( 6 )  and (c) are symmetric with a sign change. The exact period 
of the oscillations is 16-3, compared with 15.2 for interpolation (17) and 13.5 
for (18). 

The oscillation in the viscosity function is a double-peaked curve with a single 
long trough (Hinch & Leal 1973). The starting point is in between the two peaks. 
The simpler interpolation (17) has the same qualitative behaviour, but with a 
30 yo error. The more sophisticated interpolation (18) is much more successful, 
with a maximum error of only 5 %. However, the predicted period is too small 
by 20 yo compared with only 7 % for the simpler model. 

The oscillating normal-stress differences are about one-half the magnitude of 
the particle contribution to the shear stress in the case of the first difference and 
one-eighth for the second difference. The first difference is positive in the first 
half-period. The second difference also starts positive but then becomes slightly 
negative for the majority of the half-period. Only the more sophisticated inter- 
polation (18) has this small sign reversal in the second normal-stress difference. 
Otherwise the interpolations have the correct qualitative features, but errors of 
the order of 40 yo. 
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Foundation through Grant ENG74-17590, and the Petroleum Research Fund 
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FIUWRE 6. One-half the period of the oscillatory response to the sudden start of a simple 
shearing motion for spheroids of aspect ratio five with no Brownian motion: (a) the 
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